Evaluate
\frac{\sqrt{115}\left(\sqrt{23}+1\right)}{22}\approx 2.825153126
Share
Copied to clipboard
\frac{\sqrt{5}}{1-\frac{\sqrt{1}}{\sqrt{23}}}
Rewrite the square root of the division \sqrt{\frac{1}{23}} as the division of square roots \frac{\sqrt{1}}{\sqrt{23}}.
\frac{\sqrt{5}}{1-\frac{1}{\sqrt{23}}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{5}}{1-\frac{\sqrt{23}}{\left(\sqrt{23}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{23}} by multiplying numerator and denominator by \sqrt{23}.
\frac{\sqrt{5}}{1-\frac{\sqrt{23}}{23}}
The square of \sqrt{23} is 23.
\frac{\sqrt{5}}{\frac{23}{23}-\frac{\sqrt{23}}{23}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{23}{23}.
\frac{\sqrt{5}}{\frac{23-\sqrt{23}}{23}}
Since \frac{23}{23} and \frac{\sqrt{23}}{23} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{5}\times 23}{23-\sqrt{23}}
Divide \sqrt{5} by \frac{23-\sqrt{23}}{23} by multiplying \sqrt{5} by the reciprocal of \frac{23-\sqrt{23}}{23}.
\frac{\sqrt{5}\times 23\left(23+\sqrt{23}\right)}{\left(23-\sqrt{23}\right)\left(23+\sqrt{23}\right)}
Rationalize the denominator of \frac{\sqrt{5}\times 23}{23-\sqrt{23}} by multiplying numerator and denominator by 23+\sqrt{23}.
\frac{\sqrt{5}\times 23\left(23+\sqrt{23}\right)}{23^{2}-\left(\sqrt{23}\right)^{2}}
Consider \left(23-\sqrt{23}\right)\left(23+\sqrt{23}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\times 23\left(23+\sqrt{23}\right)}{529-23}
Square 23. Square \sqrt{23}.
\frac{\sqrt{5}\times 23\left(23+\sqrt{23}\right)}{506}
Subtract 23 from 529 to get 506.
\frac{23\sqrt{5}\times 23+23\sqrt{5}\sqrt{23}}{506}
Use the distributive property to multiply \sqrt{5}\times 23 by 23+\sqrt{23}.
\frac{529\sqrt{5}+23\sqrt{5}\sqrt{23}}{506}
Multiply 23 and 23 to get 529.
\frac{529\sqrt{5}+23\sqrt{115}}{506}
To multiply \sqrt{5} and \sqrt{23}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}