Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{\left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right)}-\frac{2}{5\sqrt{3}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{6}+2} by multiplying numerator and denominator by \sqrt{6}-2.
\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{\left(\sqrt{6}\right)^{2}-2^{2}}-\frac{2}{5\sqrt{3}}
Consider \left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{6-4}-\frac{2}{5\sqrt{3}}
Square \sqrt{6}. Square 2.
\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{2}-\frac{2}{5\sqrt{3}}
Subtract 4 from 6 to get 2.
\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{2}-\frac{2\sqrt{3}}{5\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2}{5\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{2}-\frac{2\sqrt{3}}{5\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{5}\left(\sqrt{6}-2\right)}{2}-\frac{2\sqrt{3}}{15}
Multiply 5 and 3 to get 15.
\frac{15\sqrt{5}\left(\sqrt{6}-2\right)}{30}-\frac{2\times 2\sqrt{3}}{30}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 15 is 30. Multiply \frac{\sqrt{5}\left(\sqrt{6}-2\right)}{2} times \frac{15}{15}. Multiply \frac{2\sqrt{3}}{15} times \frac{2}{2}.
\frac{15\sqrt{5}\left(\sqrt{6}-2\right)-2\times 2\sqrt{3}}{30}
Since \frac{15\sqrt{5}\left(\sqrt{6}-2\right)}{30} and \frac{2\times 2\sqrt{3}}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{15\sqrt{30}-30\sqrt{5}-4\sqrt{3}}{30}
Do the multiplications in 15\sqrt{5}\left(\sqrt{6}-2\right)-2\times 2\sqrt{3}.