Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{2}+\sqrt{5}.
\frac{\sqrt{5}\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(\sqrt{2}+\sqrt{5}\right)}{2-5}
Square \sqrt{2}. Square \sqrt{5}.
\frac{\sqrt{5}\left(\sqrt{2}+\sqrt{5}\right)}{-3}
Subtract 5 from 2 to get -3.
\frac{\sqrt{5}\sqrt{2}+\left(\sqrt{5}\right)^{2}}{-3}
Use the distributive property to multiply \sqrt{5} by \sqrt{2}+\sqrt{5}.
\frac{\sqrt{10}+\left(\sqrt{5}\right)^{2}}{-3}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}+5}{-3}
The square of \sqrt{5} is 5.
\frac{-\sqrt{10}-5}{3}
Multiply both numerator and denominator by -1.