Skip to main content
Evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{2i\sqrt{3}}
Factor -12=\left(2i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 3} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{3}. Take the square root of \left(2i\right)^{2}.
\frac{\sqrt{5}\sqrt{3}}{2i\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{2i\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{2i\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{2i\times 3}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{6i}
Multiply 2i and 3 to get 6i.