Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}+3\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}
Rationalize the denominator of \frac{\sqrt{5}+3}{\sqrt{5}-2} by multiplying numerator and denominator by \sqrt{5}+2.
\frac{\left(\sqrt{5}+3\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Consider \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+3\right)\left(\sqrt{5}+2\right)}{5-4}
Square \sqrt{5}. Square 2.
\frac{\left(\sqrt{5}+3\right)\left(\sqrt{5}+2\right)}{1}
Subtract 4 from 5 to get 1.
\left(\sqrt{5}+3\right)\left(\sqrt{5}+2\right)
Anything divided by one gives itself.
\left(\sqrt{5}\right)^{2}+2\sqrt{5}+3\sqrt{5}+6
Apply the distributive property by multiplying each term of \sqrt{5}+3 by each term of \sqrt{5}+2.
5+2\sqrt{5}+3\sqrt{5}+6
The square of \sqrt{5} is 5.
5+5\sqrt{5}+6
Combine 2\sqrt{5} and 3\sqrt{5} to get 5\sqrt{5}.
11+5\sqrt{5}
Add 5 and 6 to get 11.