Evaluate
\frac{5\sqrt{5}+11}{2}\approx 11.090169944
Share
Copied to clipboard
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{\left(7-3\sqrt{5}\right)\left(7+3\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}+1}{7-3\sqrt{5}} by multiplying numerator and denominator by 7+3\sqrt{5}.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{7^{2}-\left(-3\sqrt{5}\right)^{2}}
Consider \left(7-3\sqrt{5}\right)\left(7+3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-\left(-3\sqrt{5}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-\left(-3\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-9\left(\sqrt{5}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-9\times 5}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-45}
Multiply 9 and 5 to get 45.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{4}
Subtract 45 from 49 to get 4.
\frac{7\sqrt{5}+3\left(\sqrt{5}\right)^{2}+7+3\sqrt{5}}{4}
Apply the distributive property by multiplying each term of \sqrt{5}+1 by each term of 7+3\sqrt{5}.
\frac{7\sqrt{5}+3\times 5+7+3\sqrt{5}}{4}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}+15+7+3\sqrt{5}}{4}
Multiply 3 and 5 to get 15.
\frac{7\sqrt{5}+22+3\sqrt{5}}{4}
Add 15 and 7 to get 22.
\frac{10\sqrt{5}+22}{4}
Combine 7\sqrt{5} and 3\sqrt{5} to get 10\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}