Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{\left(7-3\sqrt{5}\right)\left(7+3\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}+1}{7-3\sqrt{5}} by multiplying numerator and denominator by 7+3\sqrt{5}.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{7^{2}-\left(-3\sqrt{5}\right)^{2}}
Consider \left(7-3\sqrt{5}\right)\left(7+3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-\left(-3\sqrt{5}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-\left(-3\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-9\left(\sqrt{5}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-9\times 5}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{49-45}
Multiply 9 and 5 to get 45.
\frac{\left(\sqrt{5}+1\right)\left(7+3\sqrt{5}\right)}{4}
Subtract 45 from 49 to get 4.
\frac{7\sqrt{5}+3\left(\sqrt{5}\right)^{2}+7+3\sqrt{5}}{4}
Apply the distributive property by multiplying each term of \sqrt{5}+1 by each term of 7+3\sqrt{5}.
\frac{7\sqrt{5}+3\times 5+7+3\sqrt{5}}{4}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}+15+7+3\sqrt{5}}{4}
Multiply 3 and 5 to get 15.
\frac{7\sqrt{5}+22+3\sqrt{5}}{4}
Add 15 and 7 to get 22.
\frac{10\sqrt{5}+22}{4}
Combine 7\sqrt{5} and 3\sqrt{5} to get 10\sqrt{5}.