Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}
Rationalize the denominator of \frac{\sqrt{5}+1}{\sqrt{5}-1} by multiplying numerator and denominator by \sqrt{5}+1.
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)}{5-1}
Square \sqrt{5}. Square 1.
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)}{4}
Subtract 1 from 5 to get 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}
Multiply \sqrt{5}+1 and \sqrt{5}+1 to get \left(\sqrt{5}+1\right)^{2}.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+1\right)^{2}.
\frac{5+2\sqrt{5}+1}{4}
The square of \sqrt{5} is 5.
\frac{6+2\sqrt{5}}{4}
Add 5 and 1 to get 6.