Evaluate
\frac{3\sqrt{15}+11}{7}\approx 3.231278577
Quiz
Arithmetic
5 problems similar to:
\frac { \sqrt { 5 } + \sqrt { 3 } } { 2 \sqrt { 3 } - \sqrt { 5 } }
Share
Copied to clipboard
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{3}}{2\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by 2\sqrt{3}+\sqrt{5}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{4\times 3-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{12-\left(\sqrt{5}\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{12-5}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{5}\right)}{7}
Subtract 5 from 12 to get 7.
\frac{2\sqrt{5}\sqrt{3}+\left(\sqrt{5}\right)^{2}+2\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}}{7}
Apply the distributive property by multiplying each term of \sqrt{5}+\sqrt{3} by each term of 2\sqrt{3}+\sqrt{5}.
\frac{2\sqrt{15}+\left(\sqrt{5}\right)^{2}+2\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}}{7}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{15}+5+2\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}}{7}
The square of \sqrt{5} is 5.
\frac{2\sqrt{15}+5+2\times 3+\sqrt{3}\sqrt{5}}{7}
The square of \sqrt{3} is 3.
\frac{2\sqrt{15}+5+6+\sqrt{3}\sqrt{5}}{7}
Multiply 2 and 3 to get 6.
\frac{2\sqrt{15}+11+\sqrt{3}\sqrt{5}}{7}
Add 5 and 6 to get 11.
\frac{2\sqrt{15}+11+\sqrt{15}}{7}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{3\sqrt{15}+11}{7}
Combine 2\sqrt{15} and \sqrt{15} to get 3\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}