Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{2}}{\sqrt{2}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}+\sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)
Anything divided by -1 gives its opposite.
-\left(\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}+\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{3}\right)
Apply the distributive property by multiplying each term of \sqrt{5}+\sqrt{2} by each term of \sqrt{2}+\sqrt{3}.
-\left(\sqrt{10}+\sqrt{5}\sqrt{3}+\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{3}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-\left(\sqrt{10}+\sqrt{15}+\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{3}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
-\left(\sqrt{10}+\sqrt{15}+2+\sqrt{2}\sqrt{3}\right)
The square of \sqrt{2} is 2.
-\left(\sqrt{10}+\sqrt{15}+2+\sqrt{6}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-\sqrt{10}-\sqrt{15}-2-\sqrt{6}
To find the opposite of \sqrt{10}+\sqrt{15}+2+\sqrt{6}, find the opposite of each term.