Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{7}\right)}{\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{2}}{\sqrt{2}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{7}.
\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{7}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{7}\right)}{2-7}
Square \sqrt{2}. Square \sqrt{7}.
\frac{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{7}\right)}{-5}
Subtract 7 from 2 to get -5.
\frac{\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{7}+\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{7}}{-5}
Apply the distributive property by multiplying each term of \sqrt{5}+\sqrt{2} by each term of \sqrt{2}-\sqrt{7}.
\frac{\sqrt{10}-\sqrt{5}\sqrt{7}+\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{7}}{-5}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}-\sqrt{35}+\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{7}}{-5}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{10}-\sqrt{35}+2-\sqrt{2}\sqrt{7}}{-5}
The square of \sqrt{2} is 2.
\frac{\sqrt{10}-\sqrt{35}+2-\sqrt{14}}{-5}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{-\sqrt{10}+\sqrt{35}-2+\sqrt{14}}{5}
Multiply both numerator and denominator by -1.