Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\sqrt{3}+\sqrt{32}}{\sqrt{27}-\sqrt{18}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{4\sqrt{3}+4\sqrt{2}}{\sqrt{27}-\sqrt{18}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{4\sqrt{3}+4\sqrt{2}}{3\sqrt{3}-\sqrt{18}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{4\sqrt{3}+4\sqrt{2}}{3\sqrt{3}-3\sqrt{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{\left(3\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}
Rationalize the denominator of \frac{4\sqrt{3}+4\sqrt{2}}{3\sqrt{3}-3\sqrt{2}} by multiplying numerator and denominator by 3\sqrt{3}+3\sqrt{2}.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{\left(3\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Consider \left(3\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{3^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{9\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{9\times 3-\left(-3\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{27-\left(-3\sqrt{2}\right)^{2}}
Multiply 9 and 3 to get 27.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{27-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-3\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{27-9\left(\sqrt{2}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{27-9\times 2}
The square of \sqrt{2} is 2.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{27-18}
Multiply 9 and 2 to get 18.
\frac{\left(4\sqrt{3}+4\sqrt{2}\right)\left(3\sqrt{3}+3\sqrt{2}\right)}{9}
Subtract 18 from 27 to get 9.
\frac{12\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{2}+12\sqrt{3}\sqrt{2}+12\left(\sqrt{2}\right)^{2}}{9}
Apply the distributive property by multiplying each term of 4\sqrt{3}+4\sqrt{2} by each term of 3\sqrt{3}+3\sqrt{2}.
\frac{12\times 3+12\sqrt{3}\sqrt{2}+12\sqrt{3}\sqrt{2}+12\left(\sqrt{2}\right)^{2}}{9}
The square of \sqrt{3} is 3.
\frac{36+12\sqrt{3}\sqrt{2}+12\sqrt{3}\sqrt{2}+12\left(\sqrt{2}\right)^{2}}{9}
Multiply 12 and 3 to get 36.
\frac{36+12\sqrt{6}+12\sqrt{3}\sqrt{2}+12\left(\sqrt{2}\right)^{2}}{9}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{36+12\sqrt{6}+12\sqrt{6}+12\left(\sqrt{2}\right)^{2}}{9}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{36+24\sqrt{6}+12\left(\sqrt{2}\right)^{2}}{9}
Combine 12\sqrt{6} and 12\sqrt{6} to get 24\sqrt{6}.
\frac{36+24\sqrt{6}+12\times 2}{9}
The square of \sqrt{2} is 2.
\frac{36+24\sqrt{6}+24}{9}
Multiply 12 and 2 to get 24.
\frac{60+24\sqrt{6}}{9}
Add 36 and 24 to get 60.