Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(\frac{2abc+\sqrt{10}a^{2}b^{3}c^{3}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc})
Calculate the square root of 4 and get 2.
factor(\frac{abc\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{2}+2\right)}{\sqrt{2}abc})
Factor the expressions that are not already factored in \frac{2abc+\sqrt{10}a^{2}b^{3}c^{3}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc}.
factor(\frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{2}+2}{\sqrt{2}})
Cancel out abc in both numerator and denominator.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{2}+2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
Rationalize the denominator of \frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{2}+2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{2}+2\right)\sqrt{2}}{2})
The square of \sqrt{2} is 2.
factor(\frac{-\sqrt{6}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{2}\sqrt{2}+2\sqrt{2}}{2})
Use the distributive property to multiply -\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{2}+2 by \sqrt{2}.
factor(\frac{-\sqrt{2}\sqrt{3}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{2}\sqrt{2}+2\sqrt{2}}{2})
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{10}ab^{2}c^{2}\sqrt{2}+2\sqrt{2}}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{2}\sqrt{5}ab^{2}c^{2}\sqrt{2}+2\sqrt{2}}{2})
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+2ab^{2}c^{2}\sqrt{5}+2\sqrt{2}}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\left(-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{2}\sqrt{5}+\sqrt{2}\right)
Consider -2ba^{2}c^{5}\times 3^{\frac{1}{2}}+2ab^{2}c^{2}\times 5^{\frac{1}{2}}+2\times 2^{\frac{1}{2}}. Factor out 2.
-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{2}\sqrt{5}+\sqrt{2}
Rewrite the complete factored expression. Simplify.