Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calculate the square root of 4 and get 2.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Rationalize the denominator of \frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Consider \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Square \sqrt{7}. Square \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Subtract 3 from 7 to get 4.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calculate the square root of 4 and get 2.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Rationalize the denominator of \frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Square \sqrt{7}. Square \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Subtract 3 from 7 to get 4.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Since \frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4} and \frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3}{4}
Do the multiplications in \left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right).
\frac{4\sqrt{7}+6}{4}
Do the calculations in 2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3.