Evaluate
\frac{409}{882}\approx 0.463718821
Factor
\frac{409}{2 \cdot 3 ^ {2} \cdot 7 ^ {2}} = 0.463718820861678
Share
Copied to clipboard
\frac{\sqrt{4}}{3}-\frac{2}{3}\times \left(\frac{2}{7}\right)^{3}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{2}{3}-\frac{2}{3}\times \left(\frac{2}{7}\right)^{3}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Calculate the square root of 4 and get 2.
\frac{2}{3}-\frac{2}{3}\times \frac{8}{343}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Calculate \frac{2}{7} to the power of 3 and get \frac{8}{343}.
\frac{2}{3}-\frac{2\times 8}{3\times 343}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Multiply \frac{2}{3} times \frac{8}{343} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{16}{1029}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Do the multiplications in the fraction \frac{2\times 8}{3\times 343}.
\frac{2}{3}-\frac{16}{1029}\left(\frac{25}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Calculate 5 to the power of 2 and get 25.
\frac{2}{3}-\frac{16}{1029}\left(\frac{25}{6}\times \frac{4}{5}-1\right)-\frac{1}{6}
Calculate 2 to the power of 2 and get 4.
\frac{2}{3}-\frac{16}{1029}\left(\frac{25\times 4}{6\times 5}-1\right)-\frac{1}{6}
Multiply \frac{25}{6} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{16}{1029}\left(\frac{100}{30}-1\right)-\frac{1}{6}
Do the multiplications in the fraction \frac{25\times 4}{6\times 5}.
\frac{2}{3}-\frac{16}{1029}\left(\frac{10}{3}-1\right)-\frac{1}{6}
Reduce the fraction \frac{100}{30} to lowest terms by extracting and canceling out 10.
\frac{2}{3}-\frac{16}{1029}\left(\frac{10}{3}-\frac{3}{3}\right)-\frac{1}{6}
Convert 1 to fraction \frac{3}{3}.
\frac{2}{3}-\frac{16}{1029}\times \frac{10-3}{3}-\frac{1}{6}
Since \frac{10}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\frac{16}{1029}\times \frac{7}{3}-\frac{1}{6}
Subtract 3 from 10 to get 7.
\frac{2}{3}-\frac{16\times 7}{1029\times 3}-\frac{1}{6}
Multiply \frac{16}{1029} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{112}{3087}-\frac{1}{6}
Do the multiplications in the fraction \frac{16\times 7}{1029\times 3}.
\frac{2}{3}-\frac{16}{441}-\frac{1}{6}
Reduce the fraction \frac{112}{3087} to lowest terms by extracting and canceling out 7.
\frac{294}{441}-\frac{16}{441}-\frac{1}{6}
Least common multiple of 3 and 441 is 441. Convert \frac{2}{3} and \frac{16}{441} to fractions with denominator 441.
\frac{294-16}{441}-\frac{1}{6}
Since \frac{294}{441} and \frac{16}{441} have the same denominator, subtract them by subtracting their numerators.
\frac{278}{441}-\frac{1}{6}
Subtract 16 from 294 to get 278.
\frac{556}{882}-\frac{147}{882}
Least common multiple of 441 and 6 is 882. Convert \frac{278}{441} and \frac{1}{6} to fractions with denominator 882.
\frac{556-147}{882}
Since \frac{556}{882} and \frac{147}{882} have the same denominator, subtract them by subtracting their numerators.
\frac{409}{882}
Subtract 147 from 556 to get 409.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}