Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+2}{1-\sqrt{7}}
Calculate the square root of 4 and get 2.
\frac{4}{1-\sqrt{7}}
Add 2 and 2 to get 4.
\frac{4\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}
Rationalize the denominator of \frac{4}{1-\sqrt{7}} by multiplying numerator and denominator by 1+\sqrt{7}.
\frac{4\left(1+\sqrt{7}\right)}{1^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(1+\sqrt{7}\right)}{1-7}
Square 1. Square \sqrt{7}.
\frac{4\left(1+\sqrt{7}\right)}{-6}
Subtract 7 from 1 to get -6.
-\frac{2}{3}\left(1+\sqrt{7}\right)
Divide 4\left(1+\sqrt{7}\right) by -6 to get -\frac{2}{3}\left(1+\sqrt{7}\right).
-\frac{2}{3}-\frac{2}{3}\sqrt{7}
Use the distributive property to multiply -\frac{2}{3} by 1+\sqrt{7}.