Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}}{\sqrt{6}+1}
Add 4 and 3 to get 7.
\frac{\sqrt{7}\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{6}+1} by multiplying numerator and denominator by \sqrt{6}-1.
\frac{\sqrt{7}\left(\sqrt{6}-1\right)}{\left(\sqrt{6}\right)^{2}-1^{2}}
Consider \left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(\sqrt{6}-1\right)}{6-1}
Square \sqrt{6}. Square 1.
\frac{\sqrt{7}\left(\sqrt{6}-1\right)}{5}
Subtract 1 from 6 to get 5.
\frac{\sqrt{7}\sqrt{6}-\sqrt{7}}{5}
Use the distributive property to multiply \sqrt{7} by \sqrt{6}-1.
\frac{\sqrt{42}-\sqrt{7}}{5}
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.