Evaluate
\frac{\sqrt{6}}{2}+\frac{2\sqrt{5}}{9}\approx 1.721648866
Share
Copied to clipboard
\frac{6}{\sqrt{24}}+\frac{\sqrt{20}}{\sqrt{81}}
Calculate the square root of 36 and get 6.
\frac{6}{2\sqrt{6}}+\frac{\sqrt{20}}{\sqrt{81}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{6\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}+\frac{\sqrt{20}}{\sqrt{81}}
Rationalize the denominator of \frac{6}{2\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{6\sqrt{6}}{2\times 6}+\frac{\sqrt{20}}{\sqrt{81}}
The square of \sqrt{6} is 6.
\frac{\sqrt{6}}{2}+\frac{\sqrt{20}}{\sqrt{81}}
Cancel out 2\times 3 in both numerator and denominator.
\frac{\sqrt{6}}{2}+\frac{2\sqrt{5}}{\sqrt{81}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\sqrt{6}}{2}+\frac{2\sqrt{5}}{9}
Calculate the square root of 81 and get 9.
\frac{9\sqrt{6}}{18}+\frac{2\times 2\sqrt{5}}{18}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 9 is 18. Multiply \frac{\sqrt{6}}{2} times \frac{9}{9}. Multiply \frac{2\sqrt{5}}{9} times \frac{2}{2}.
\frac{9\sqrt{6}+2\times 2\sqrt{5}}{18}
Since \frac{9\sqrt{6}}{18} and \frac{2\times 2\sqrt{5}}{18} have the same denominator, add them by adding their numerators.
\frac{9\sqrt{6}+4\sqrt{5}}{18}
Do the multiplications in 9\sqrt{6}+2\times 2\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}