Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Square both sides of the equation.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
To raise \frac{\sqrt{34ab}}{\sqrt{6a}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
Expand \left(9\sqrt{ab}\right)^{2}.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
Calculate 9 to the power of 2 and get 81.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{ab} to the power of 2 and get ab.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{34ab} to the power of 2 and get 34ab.
\frac{34ab}{6a}=81ab
Calculate \sqrt{6a} to the power of 2 and get 6a.
\frac{17b}{3}=81ab
Cancel out 2a in both numerator and denominator.
17b=243ab
Multiply both sides of the equation by 3.
243ab=17b
Swap sides so that all variable terms are on the left hand side.
243ba=17b
The equation is in standard form.
\frac{243ba}{243b}=\frac{17b}{243b}
Divide both sides by 243b.
a=\frac{17b}{243b}
Dividing by 243b undoes the multiplication by 243b.
a=\frac{17}{243}
Divide 17b by 243b.
\frac{\sqrt{34\times \frac{17}{243}b}}{\sqrt{6\times \frac{17}{243}}}=9\sqrt{\frac{17}{243}b}
Substitute \frac{17}{243} for a in the equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab}.
\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}=\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}
Simplify. The value a=\frac{17}{243} satisfies the equation.
a=\frac{17}{243}
Equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} has a unique solution.
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Square both sides of the equation.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
To raise \frac{\sqrt{34ab}}{\sqrt{6a}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
Expand \left(9\sqrt{ab}\right)^{2}.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
Calculate 9 to the power of 2 and get 81.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{ab} to the power of 2 and get ab.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{34ab} to the power of 2 and get 34ab.
\frac{34ab}{6a}=81ab
Calculate \sqrt{6a} to the power of 2 and get 6a.
\frac{17b}{3}=81ab
Cancel out 2a in both numerator and denominator.
17b=243ab
Multiply both sides of the equation by 3.
17b-243ab=0
Subtract 243ab from both sides.
\left(17-243a\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 17-243a.
\frac{\sqrt{34a\times 0}}{\sqrt{6a}}=9\sqrt{a\times 0}
Substitute 0 for b in the equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab}.
0=0
Simplify. The value b=0 satisfies the equation.
b=0
Equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} has a unique solution.