Solve for a
\left\{\begin{matrix}a=\frac{17}{243}\approx 0.069958848\text{, }&b\geq 0\\a>0\text{, }&b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=0\text{, }&a>0\\b\geq 0\text{, }&a=\frac{17}{243}\end{matrix}\right.
Share
Copied to clipboard
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Square both sides of the equation.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
To raise \frac{\sqrt{34ab}}{\sqrt{6a}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
Expand \left(9\sqrt{ab}\right)^{2}.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
Calculate 9 to the power of 2 and get 81.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{ab} to the power of 2 and get ab.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{34ab} to the power of 2 and get 34ab.
\frac{34ab}{6a}=81ab
Calculate \sqrt{6a} to the power of 2 and get 6a.
\frac{17b}{3}=81ab
Cancel out 2a in both numerator and denominator.
17b=243ab
Multiply both sides of the equation by 3.
243ab=17b
Swap sides so that all variable terms are on the left hand side.
243ba=17b
The equation is in standard form.
\frac{243ba}{243b}=\frac{17b}{243b}
Divide both sides by 243b.
a=\frac{17b}{243b}
Dividing by 243b undoes the multiplication by 243b.
a=\frac{17}{243}
Divide 17b by 243b.
\frac{\sqrt{34\times \frac{17}{243}b}}{\sqrt{6\times \frac{17}{243}}}=9\sqrt{\frac{17}{243}b}
Substitute \frac{17}{243} for a in the equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab}.
\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}=\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}
Simplify. The value a=\frac{17}{243} satisfies the equation.
a=\frac{17}{243}
Equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} has a unique solution.
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Square both sides of the equation.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
To raise \frac{\sqrt{34ab}}{\sqrt{6a}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
Expand \left(9\sqrt{ab}\right)^{2}.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
Calculate 9 to the power of 2 and get 81.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{ab} to the power of 2 and get ab.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
Calculate \sqrt{34ab} to the power of 2 and get 34ab.
\frac{34ab}{6a}=81ab
Calculate \sqrt{6a} to the power of 2 and get 6a.
\frac{17b}{3}=81ab
Cancel out 2a in both numerator and denominator.
17b=243ab
Multiply both sides of the equation by 3.
17b-243ab=0
Subtract 243ab from both sides.
\left(17-243a\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 17-243a.
\frac{\sqrt{34a\times 0}}{\sqrt{6a}}=9\sqrt{a\times 0}
Substitute 0 for b in the equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab}.
0=0
Simplify. The value b=0 satisfies the equation.
b=0
Equation \frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}