Evaluate
\frac{2\sqrt{3}}{5}-\frac{11}{15}\approx -0.04051301
Factor
\frac{6 \sqrt{3} - 11}{15} = -0.040513010305782395
Share
Copied to clipboard
\frac{\sqrt{33}-\sqrt{11}}{3\sqrt{11}}-\frac{\sqrt{60}-\sqrt{5}}{5\sqrt{15}}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{3\left(\sqrt{11}\right)^{2}}-\frac{\sqrt{60}-\sqrt{5}}{5\sqrt{15}}
Rationalize the denominator of \frac{\sqrt{33}-\sqrt{11}}{3\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{3\times 11}-\frac{\sqrt{60}-\sqrt{5}}{5\sqrt{15}}
The square of \sqrt{11} is 11.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}-\frac{\sqrt{60}-\sqrt{5}}{5\sqrt{15}}
Multiply 3 and 11 to get 33.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}-\frac{2\sqrt{15}-\sqrt{5}}{5\sqrt{15}}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}-\frac{\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{5\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{15}-\sqrt{5}}{5\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}-\frac{\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{5\times 15}
The square of \sqrt{15} is 15.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}-\frac{\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{75}
Multiply 5 and 15 to get 75.
\frac{25\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{825}-\frac{11\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{825}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 33 and 75 is 825. Multiply \frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33} times \frac{25}{25}. Multiply \frac{\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{75} times \frac{11}{11}.
\frac{25\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}-11\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{825}
Since \frac{25\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{825} and \frac{11\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}}{825} have the same denominator, subtract them by subtracting their numerators.
\frac{275\sqrt{3}-275-330+55\sqrt{3}}{825}
Do the multiplications in 25\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}-11\left(2\sqrt{15}-\sqrt{5}\right)\sqrt{15}.
\frac{330\sqrt{3}-605}{825}
Do the calculations in 275\sqrt{3}-275-330+55\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}