Evaluate
\frac{\sqrt{30}+6\sqrt{3}-3\sqrt{10}-6}{45}\approx 0.008504388
Share
Copied to clipboard
\frac{\sqrt{33}-\sqrt{11}}{3\sqrt{11}}\times \frac{\sqrt{60}-\sqrt{50}}{5\sqrt{15}}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{3\left(\sqrt{11}\right)^{2}}\times \frac{\sqrt{60}-\sqrt{50}}{5\sqrt{15}}
Rationalize the denominator of \frac{\sqrt{33}-\sqrt{11}}{3\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{3\times 11}\times \frac{\sqrt{60}-\sqrt{50}}{5\sqrt{15}}
The square of \sqrt{11} is 11.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}\times \frac{\sqrt{60}-\sqrt{50}}{5\sqrt{15}}
Multiply 3 and 11 to get 33.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}\times \frac{2\sqrt{15}-\sqrt{50}}{5\sqrt{15}}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}\times \frac{2\sqrt{15}-5\sqrt{2}}{5\sqrt{15}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}\times \frac{\left(2\sqrt{15}-5\sqrt{2}\right)\sqrt{15}}{5\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{15}-5\sqrt{2}}{5\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}\times \frac{\left(2\sqrt{15}-5\sqrt{2}\right)\sqrt{15}}{5\times 15}
The square of \sqrt{15} is 15.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33}\times \frac{\left(2\sqrt{15}-5\sqrt{2}\right)\sqrt{15}}{75}
Multiply 5 and 15 to get 75.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}\left(2\sqrt{15}-5\sqrt{2}\right)\sqrt{15}}{33\times 75}
Multiply \frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{11}}{33} times \frac{\left(2\sqrt{15}-5\sqrt{2}\right)\sqrt{15}}{75} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{165}\left(2\sqrt{15}-5\sqrt{2}\right)}{33\times 75}
To multiply \sqrt{11} and \sqrt{15}, multiply the numbers under the square root.
\frac{\left(\sqrt{33}-\sqrt{11}\right)\sqrt{165}\left(2\sqrt{15}-5\sqrt{2}\right)}{2475}
Multiply 33 and 75 to get 2475.
\frac{\left(\sqrt{33}\sqrt{165}-\sqrt{11}\sqrt{165}\right)\left(2\sqrt{15}-5\sqrt{2}\right)}{2475}
Use the distributive property to multiply \sqrt{33}-\sqrt{11} by \sqrt{165}.
\frac{\left(\sqrt{33}\sqrt{33}\sqrt{5}-\sqrt{11}\sqrt{165}\right)\left(2\sqrt{15}-5\sqrt{2}\right)}{2475}
Factor 165=33\times 5. Rewrite the square root of the product \sqrt{33\times 5} as the product of square roots \sqrt{33}\sqrt{5}.
\frac{\left(33\sqrt{5}-\sqrt{11}\sqrt{165}\right)\left(2\sqrt{15}-5\sqrt{2}\right)}{2475}
Multiply \sqrt{33} and \sqrt{33} to get 33.
\frac{\left(33\sqrt{5}-\sqrt{11}\sqrt{11}\sqrt{15}\right)\left(2\sqrt{15}-5\sqrt{2}\right)}{2475}
Factor 165=11\times 15. Rewrite the square root of the product \sqrt{11\times 15} as the product of square roots \sqrt{11}\sqrt{15}.
\frac{\left(33\sqrt{5}-11\sqrt{15}\right)\left(2\sqrt{15}-5\sqrt{2}\right)}{2475}
Multiply \sqrt{11} and \sqrt{11} to get 11.
\frac{66\sqrt{5}\sqrt{15}-165\sqrt{5}\sqrt{2}-22\left(\sqrt{15}\right)^{2}+55\sqrt{15}\sqrt{2}}{2475}
Apply the distributive property by multiplying each term of 33\sqrt{5}-11\sqrt{15} by each term of 2\sqrt{15}-5\sqrt{2}.
\frac{66\sqrt{5}\sqrt{5}\sqrt{3}-165\sqrt{5}\sqrt{2}-22\left(\sqrt{15}\right)^{2}+55\sqrt{15}\sqrt{2}}{2475}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{66\times 5\sqrt{3}-165\sqrt{5}\sqrt{2}-22\left(\sqrt{15}\right)^{2}+55\sqrt{15}\sqrt{2}}{2475}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{330\sqrt{3}-165\sqrt{5}\sqrt{2}-22\left(\sqrt{15}\right)^{2}+55\sqrt{15}\sqrt{2}}{2475}
Multiply 66 and 5 to get 330.
\frac{330\sqrt{3}-165\sqrt{10}-22\left(\sqrt{15}\right)^{2}+55\sqrt{15}\sqrt{2}}{2475}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{330\sqrt{3}-165\sqrt{10}-22\times 15+55\sqrt{15}\sqrt{2}}{2475}
The square of \sqrt{15} is 15.
\frac{330\sqrt{3}-165\sqrt{10}-330+55\sqrt{15}\sqrt{2}}{2475}
Multiply -22 and 15 to get -330.
\frac{330\sqrt{3}-165\sqrt{10}-330+55\sqrt{30}}{2475}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}