Evaluate
\frac{300\sqrt{3}}{133}+\frac{2}{5}\approx 4.306881521
Factor
\frac{2 {(750 \sqrt{3} + 133)}}{665} = 4.3068815208320546
Share
Copied to clipboard
\frac{10\sqrt{3}}{\frac{1330}{400}}\times \frac{3}{4}+\frac{2}{5}
Factor 300=10^{2}\times 3. Rewrite the square root of the product \sqrt{10^{2}\times 3} as the product of square roots \sqrt{10^{2}}\sqrt{3}. Take the square root of 10^{2}.
\frac{10\sqrt{3}}{\frac{133}{40}}\times \frac{3}{4}+\frac{2}{5}
Reduce the fraction \frac{1330}{400} to lowest terms by extracting and canceling out 10.
\frac{10\sqrt{3}\times 40}{133}\times \frac{3}{4}+\frac{2}{5}
Divide 10\sqrt{3} by \frac{133}{40} by multiplying 10\sqrt{3} by the reciprocal of \frac{133}{40}.
\frac{400\sqrt{3}}{133}\times \frac{3}{4}+\frac{2}{5}
Multiply 10 and 40 to get 400.
\frac{400\sqrt{3}\times 3}{133\times 4}+\frac{2}{5}
Multiply \frac{400\sqrt{3}}{133} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 100\sqrt{3}}{133}+\frac{2}{5}
Cancel out 4 in both numerator and denominator.
\frac{5\times 3\times 100\sqrt{3}}{665}+\frac{2\times 133}{665}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 133 and 5 is 665. Multiply \frac{3\times 100\sqrt{3}}{133} times \frac{5}{5}. Multiply \frac{2}{5} times \frac{133}{133}.
\frac{5\times 3\times 100\sqrt{3}+2\times 133}{665}
Since \frac{5\times 3\times 100\sqrt{3}}{665} and \frac{2\times 133}{665} have the same denominator, add them by adding their numerators.
\frac{1500\sqrt{3}+266}{665}
Do the multiplications in 5\times 3\times 100\sqrt{3}+2\times 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}