Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3,2}-\sqrt{1,8}\right)\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3,2}-\sqrt{1,8}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\left(\sqrt{3,2}-\sqrt{1,8}\right)\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{\sqrt{3,2}\sqrt{10}-\sqrt{1,8}\sqrt{10}}{10}
Use the distributive property to multiply \sqrt{3,2}-\sqrt{1,8} by \sqrt{10}.
\frac{\sqrt{32}-\sqrt{1,8}\sqrt{10}}{10}
To multiply \sqrt{3,2} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{32}-\sqrt{18}}{10}
To multiply \sqrt{1,8} and \sqrt{10}, multiply the numbers under the square root.
\frac{4\sqrt{2}-\sqrt{18}}{10}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{4\sqrt{2}-3\sqrt{2}}{10}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\sqrt{2}}{10}
Combine 4\sqrt{2} and -3\sqrt{2} to get \sqrt{2}.