\frac { \sqrt { 3,2 } - \sqrt { 1,8 } } { \sqrt { 10 } }
Evaluate
\frac{\sqrt{2}}{10}\approx 0.141421356
Share
Copied to clipboard
\frac{\left(\sqrt{3,2}-\sqrt{1,8}\right)\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3,2}-\sqrt{1,8}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\left(\sqrt{3,2}-\sqrt{1,8}\right)\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{\sqrt{3,2}\sqrt{10}-\sqrt{1,8}\sqrt{10}}{10}
Use the distributive property to multiply \sqrt{3,2}-\sqrt{1,8} by \sqrt{10}.
\frac{\sqrt{32}-\sqrt{1,8}\sqrt{10}}{10}
To multiply \sqrt{3,2} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{32}-\sqrt{18}}{10}
To multiply \sqrt{1,8} and \sqrt{10}, multiply the numbers under the square root.
\frac{4\sqrt{2}-\sqrt{18}}{10}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{4\sqrt{2}-3\sqrt{2}}{10}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\sqrt{2}}{10}
Combine 4\sqrt{2} and -3\sqrt{2} to get \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}