Solve for a (complex solution)
\left\{\begin{matrix}a=0\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=2\text{ or }x=\frac{3}{2}\text{ or }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=0\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=2\text{ or }x=\frac{3}{2}\text{ or }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{3}{2}\text{; }x=0\text{; }x=2\text{, }&\text{unconditionally}\\x\neq -1\text{, }&a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
10\sqrt{3}ax\left(ax-\frac{1}{2}a\right)=\left(x+1\right)\sqrt{3}ax\left(a+2ax\right)
Multiply both sides of the equation by 10\left(x+1\right), the least common multiple of x+1,2,10.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(x+1\right)\sqrt{3}ax\left(a+2ax\right)
Use the distributive property to multiply 10\sqrt{3}ax by ax-\frac{1}{2}a.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(x\sqrt{3}+\sqrt{3}\right)ax\left(a+2ax\right)
Use the distributive property to multiply x+1 by \sqrt{3}.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(x\sqrt{3}a+\sqrt{3}a\right)x\left(a+2ax\right)
Use the distributive property to multiply x\sqrt{3}+\sqrt{3} by a.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(\sqrt{3}ax^{2}+\sqrt{3}ax\right)\left(a+2ax\right)
Use the distributive property to multiply x\sqrt{3}a+\sqrt{3}a by x.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=3\sqrt{3}x^{2}a^{2}+2\sqrt{3}a^{2}x^{3}+\sqrt{3}xa^{2}
Use the distributive property to multiply \sqrt{3}ax^{2}+\sqrt{3}ax by a+2ax and combine like terms.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x-3\sqrt{3}x^{2}a^{2}=2\sqrt{3}a^{2}x^{3}+\sqrt{3}xa^{2}
Subtract 3\sqrt{3}x^{2}a^{2} from both sides.
7\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=2\sqrt{3}a^{2}x^{3}+\sqrt{3}xa^{2}
Combine 10\sqrt{3}a^{2}x^{2} and -3\sqrt{3}x^{2}a^{2} to get 7\sqrt{3}a^{2}x^{2}.
7\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x-2\sqrt{3}a^{2}x^{3}=\sqrt{3}xa^{2}
Subtract 2\sqrt{3}a^{2}x^{3} from both sides.
7\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x-2\sqrt{3}a^{2}x^{3}-\sqrt{3}xa^{2}=0
Subtract \sqrt{3}xa^{2} from both sides.
7\sqrt{3}a^{2}x^{2}-6\sqrt{3}a^{2}x-2\sqrt{3}a^{2}x^{3}=0
Combine -5\sqrt{3}a^{2}x and -\sqrt{3}xa^{2} to get -6\sqrt{3}a^{2}x.
\left(7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3}\right)a^{2}=0
Combine all terms containing a.
a^{2}=\frac{0}{-2\sqrt{3}x^{3}+7\sqrt{3}x^{2}-6\sqrt{3}x}
Dividing by 7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3} undoes the multiplication by 7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3}.
a^{2}=0
Divide 0 by 7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3}.
a=0 a=0
Take the square root of both sides of the equation.
a=0
The equation is now solved. Solutions are the same.
10\sqrt{3}ax\left(ax-\frac{1}{2}a\right)=\left(x+1\right)\sqrt{3}ax\left(a+2ax\right)
Multiply both sides of the equation by 10\left(x+1\right), the least common multiple of x+1,2,10.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(x+1\right)\sqrt{3}ax\left(a+2ax\right)
Use the distributive property to multiply 10\sqrt{3}ax by ax-\frac{1}{2}a.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(x\sqrt{3}+\sqrt{3}\right)ax\left(a+2ax\right)
Use the distributive property to multiply x+1 by \sqrt{3}.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(x\sqrt{3}a+\sqrt{3}a\right)x\left(a+2ax\right)
Use the distributive property to multiply x\sqrt{3}+\sqrt{3} by a.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=\left(\sqrt{3}ax^{2}+\sqrt{3}ax\right)\left(a+2ax\right)
Use the distributive property to multiply x\sqrt{3}a+\sqrt{3}a by x.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=3\sqrt{3}x^{2}a^{2}+2\sqrt{3}a^{2}x^{3}+\sqrt{3}xa^{2}
Use the distributive property to multiply \sqrt{3}ax^{2}+\sqrt{3}ax by a+2ax and combine like terms.
10\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x-3\sqrt{3}x^{2}a^{2}=2\sqrt{3}a^{2}x^{3}+\sqrt{3}xa^{2}
Subtract 3\sqrt{3}x^{2}a^{2} from both sides.
7\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x=2\sqrt{3}a^{2}x^{3}+\sqrt{3}xa^{2}
Combine 10\sqrt{3}a^{2}x^{2} and -3\sqrt{3}x^{2}a^{2} to get 7\sqrt{3}a^{2}x^{2}.
7\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x-2\sqrt{3}a^{2}x^{3}=\sqrt{3}xa^{2}
Subtract 2\sqrt{3}a^{2}x^{3} from both sides.
7\sqrt{3}a^{2}x^{2}-5\sqrt{3}a^{2}x-2\sqrt{3}a^{2}x^{3}-\sqrt{3}xa^{2}=0
Subtract \sqrt{3}xa^{2} from both sides.
7\sqrt{3}a^{2}x^{2}-6\sqrt{3}a^{2}x-2\sqrt{3}a^{2}x^{3}=0
Combine -5\sqrt{3}a^{2}x and -\sqrt{3}xa^{2} to get -6\sqrt{3}a^{2}x.
\left(7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3}\right)a^{2}=0
Combine all terms containing a.
\left(-2\sqrt{3}x^{3}+7\sqrt{3}x^{2}-6\sqrt{3}x\right)a^{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}}}{2\left(-2\sqrt{3}x^{3}+7\sqrt{3}x^{2}-6\sqrt{3}x\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3} for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±0}{2\left(-2\sqrt{3}x^{3}+7\sqrt{3}x^{2}-6\sqrt{3}x\right)}
Take the square root of 0^{2}.
a=\frac{0}{2\sqrt{3}x\left(2-x\right)\left(2x-3\right)}
Multiply 2 times 7\sqrt{3}x^{2}-6\sqrt{3}x-2\sqrt{3}x^{3}.
a=0
Divide 0 by 2x\left(-3+2x\right)\left(2-x\right)\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}