Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Rationalize the denominator of \frac{\sqrt{3}-5}{\sqrt{7}+5} by multiplying numerator and denominator by \sqrt{7}-5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Consider \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{7-25}
Square \sqrt{7}. Square 5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{-18}
Subtract 25 from 7 to get -18.
\frac{\sqrt{3}\sqrt{7}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Apply the distributive property by multiplying each term of \sqrt{3}-5 by each term of \sqrt{7}-5.
\frac{\sqrt{21}-5\sqrt{3}-5\sqrt{7}+25}{-18}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\frac{-\sqrt{21}+5\sqrt{3}+5\sqrt{7}-25}{18}
Multiply both numerator and denominator by -1.