Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-3\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}-3}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{\left(\sqrt{3}-3\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(1-\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{\left(\sqrt{3}-3\right)\left(1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{\sqrt{3}-\left(\sqrt{3}\right)^{2}-3+3\sqrt{3}}{-2}
Apply the distributive property by multiplying each term of \sqrt{3}-3 by each term of 1-\sqrt{3}.
\frac{\sqrt{3}-3-3+3\sqrt{3}}{-2}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}-6+3\sqrt{3}}{-2}
Subtract 3 from -3 to get -6.
\frac{4\sqrt{3}-6}{-2}
Combine \sqrt{3} and 3\sqrt{3} to get 4\sqrt{3}.
-2\sqrt{3}+3
Divide each term of 4\sqrt{3}-6 by -2 to get -2\sqrt{3}+3.