Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{\left(\sqrt{2}+3\right)\left(\sqrt{2}-3\right)}
Rationalize the denominator of \frac{\sqrt{3}-3}{\sqrt{2}+3} by multiplying numerator and denominator by \sqrt{2}-3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{\left(\sqrt{2}\right)^{2}-3^{2}}
Consider \left(\sqrt{2}+3\right)\left(\sqrt{2}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{2-9}
Square \sqrt{2}. Square 3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{-7}
Subtract 9 from 2 to get -7.
\frac{\sqrt{3}\sqrt{2}-3\sqrt{3}-3\sqrt{2}+9}{-7}
Apply the distributive property by multiplying each term of \sqrt{3}-3 by each term of \sqrt{2}-3.
\frac{\sqrt{6}-3\sqrt{3}-3\sqrt{2}+9}{-7}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{-\sqrt{6}+3\sqrt{3}+3\sqrt{2}-9}{7}
Multiply both numerator and denominator by -1.