Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\left(1-2\sqrt{3}\right)^{2}-1
Rationalize the denominator of \frac{\sqrt{3}-2}{\sqrt{3}+2} by multiplying numerator and denominator by \sqrt{3}-2.
\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}+\left(1-2\sqrt{3}\right)^{2}-1
Consider \left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{3-4}+\left(1-2\sqrt{3}\right)^{2}-1
Square \sqrt{3}. Square 2.
\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{-1}+\left(1-2\sqrt{3}\right)^{2}-1
Subtract 4 from 3 to get -1.
\frac{\left(\sqrt{3}-2\right)^{2}}{-1}+\left(1-2\sqrt{3}\right)^{2}-1
Multiply \sqrt{3}-2 and \sqrt{3}-2 to get \left(\sqrt{3}-2\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4}{-1}+\left(1-2\sqrt{3}\right)^{2}-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
\frac{3-4\sqrt{3}+4}{-1}+\left(1-2\sqrt{3}\right)^{2}-1
The square of \sqrt{3} is 3.
\frac{7-4\sqrt{3}}{-1}+\left(1-2\sqrt{3}\right)^{2}-1
Add 3 and 4 to get 7.
-7+4\sqrt{3}+\left(1-2\sqrt{3}\right)^{2}-1
Anything divided by -1 gives its opposite. To find the opposite of 7-4\sqrt{3}, find the opposite of each term.
-7+4\sqrt{3}+1-4\sqrt{3}+4\left(\sqrt{3}\right)^{2}-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2\sqrt{3}\right)^{2}.
-7+4\sqrt{3}+1-4\sqrt{3}+4\times 3-1
The square of \sqrt{3} is 3.
-7+4\sqrt{3}+1-4\sqrt{3}+12-1
Multiply 4 and 3 to get 12.
-7+4\sqrt{3}+13-4\sqrt{3}-1
Add 1 and 12 to get 13.
6+4\sqrt{3}-4\sqrt{3}-1
Add -7 and 13 to get 6.
6-1
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
5
Subtract 1 from 6 to get 5.