Evaluate
\frac{\sqrt{5}-4\sqrt{15}}{10}\approx -1.325586541
Share
Copied to clipboard
\frac{\sqrt{3}-12}{2\sqrt{5}\sqrt{3}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\sqrt{3}-12}{2\sqrt{15}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\left(\sqrt{3}-12\right)\sqrt{15}}{2\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}-12}{2\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\left(\sqrt{3}-12\right)\sqrt{15}}{2\times 15}
The square of \sqrt{15} is 15.
\frac{\left(\sqrt{3}-12\right)\sqrt{15}}{30}
Multiply 2 and 15 to get 30.
\frac{\sqrt{3}\sqrt{15}-12\sqrt{15}}{30}
Use the distributive property to multiply \sqrt{3}-12 by \sqrt{15}.
\frac{\sqrt{3}\sqrt{3}\sqrt{5}-12\sqrt{15}}{30}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}-12\sqrt{15}}{30}
Multiply \sqrt{3} and \sqrt{3} to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}