Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}-1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Square \sqrt{3}. Square 1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Subtract 1 from 3 to get 2.
\frac{\left(\sqrt{3}-1\right)^{2}}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Multiply \sqrt{3}-1 and \sqrt{3}-1 to get \left(\sqrt{3}-1\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{3-2\sqrt{3}+1}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Add 3 and 1 to get 4.
2-\sqrt{3}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}=a+b\sqrt{3}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}=a+b\sqrt{3}
Square \sqrt{3}. Square 1.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}=a+b\sqrt{3}
Subtract 1 from 3 to get 2.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)^{2}}{2}=a+b\sqrt{3}
Multiply \sqrt{3}+1 and \sqrt{3}+1 to get \left(\sqrt{3}+1\right)^{2}.
2-\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}=a+b\sqrt{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
2-\sqrt{3}+\frac{3+2\sqrt{3}+1}{2}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
2-\sqrt{3}+\frac{4+2\sqrt{3}}{2}=a+b\sqrt{3}
Add 3 and 1 to get 4.
2-\sqrt{3}+2+\sqrt{3}=a+b\sqrt{3}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
4-\sqrt{3}+\sqrt{3}=a+b\sqrt{3}
Add 2 and 2 to get 4.
4=a+b\sqrt{3}
Combine -\sqrt{3} and \sqrt{3} to get 0.
a+b\sqrt{3}=4
Swap sides so that all variable terms are on the left hand side.
a=4-b\sqrt{3}
Subtract b\sqrt{3} from both sides.
a=-\sqrt{3}b+4
Reorder the terms.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}-1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Square \sqrt{3}. Square 1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Subtract 1 from 3 to get 2.
\frac{\left(\sqrt{3}-1\right)^{2}}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Multiply \sqrt{3}-1 and \sqrt{3}-1 to get \left(\sqrt{3}-1\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{3-2\sqrt{3}+1}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{2}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Add 3 and 1 to get 4.
2-\sqrt{3}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b\sqrt{3}
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}=a+b\sqrt{3}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}=a+b\sqrt{3}
Square \sqrt{3}. Square 1.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}=a+b\sqrt{3}
Subtract 1 from 3 to get 2.
2-\sqrt{3}+\frac{\left(\sqrt{3}+1\right)^{2}}{2}=a+b\sqrt{3}
Multiply \sqrt{3}+1 and \sqrt{3}+1 to get \left(\sqrt{3}+1\right)^{2}.
2-\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}=a+b\sqrt{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
2-\sqrt{3}+\frac{3+2\sqrt{3}+1}{2}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
2-\sqrt{3}+\frac{4+2\sqrt{3}}{2}=a+b\sqrt{3}
Add 3 and 1 to get 4.
2-\sqrt{3}+2+\sqrt{3}=a+b\sqrt{3}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
4-\sqrt{3}+\sqrt{3}=a+b\sqrt{3}
Add 2 and 2 to get 4.
4=a+b\sqrt{3}
Combine -\sqrt{3} and \sqrt{3} to get 0.
a+b\sqrt{3}=4
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=4-a
Subtract a from both sides.
\sqrt{3}b=4-a
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{4-a}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{4-a}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(4-a\right)}{3}
Divide 4-a by \sqrt{3}.