Evaluate
\frac{107179676972449082242158358245529\sqrt{3}-107179676972449080000000000000000}{78460969082652753273524925263413}\approx 1
Share
Copied to clipboard
\frac{\sqrt{3} - 0.2679491924311227}{1 + \sqrt{3} 0.2679491924311227}
Evaluate trigonometric functions in the problem
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{\left(1+0.2679491924311227\sqrt{3}\right)\left(1-0.2679491924311227\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}-0.2679491924311227}{1+0.2679491924311227\sqrt{3}} by multiplying numerator and denominator by 1-0.2679491924311227\sqrt{3}.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{1^{2}-\left(0.2679491924311227\sqrt{3}\right)^{2}}
Consider \left(1+0.2679491924311227\sqrt{3}\right)\left(1-0.2679491924311227\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{1-\left(0.2679491924311227\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{1-0.2679491924311227^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(0.2679491924311227\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{1-0.07179676972449082242158358245529\left(\sqrt{3}\right)^{2}}
Calculate 0.2679491924311227 to the power of 2 and get 0.07179676972449082242158358245529.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{1-0.07179676972449082242158358245529\times 3}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{1-0.21539030917347246726475074736587}
Multiply 0.07179676972449082242158358245529 and 3 to get 0.21539030917347246726475074736587.
\frac{\left(\sqrt{3}-0.2679491924311227\right)\left(1-0.2679491924311227\sqrt{3}\right)}{0.78460969082652753273524925263413}
Subtract 0.21539030917347246726475074736587 from 1 to get 0.78460969082652753273524925263413.
\frac{\sqrt{3}-0.2679491924311227\left(\sqrt{3}\right)^{2}-0.2679491924311227+0.07179676972449082242158358245529\sqrt{3}}{0.78460969082652753273524925263413}
Apply the distributive property by multiplying each term of \sqrt{3}-0.2679491924311227 by each term of 1-0.2679491924311227\sqrt{3}.
\frac{\sqrt{3}-0.2679491924311227\times 3-0.2679491924311227+0.07179676972449082242158358245529\sqrt{3}}{0.78460969082652753273524925263413}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}-0.8038475772933681-0.2679491924311227+0.07179676972449082242158358245529\sqrt{3}}{0.78460969082652753273524925263413}
Multiply -0.2679491924311227 and 3 to get -0.8038475772933681.
\frac{\sqrt{3}-1.0717967697244908+0.07179676972449082242158358245529\sqrt{3}}{0.78460969082652753273524925263413}
Subtract 0.2679491924311227 from -0.8038475772933681 to get -1.0717967697244908.
\frac{1.07179676972449082242158358245529\sqrt{3}-1.0717967697244908}{0.78460969082652753273524925263413}
Combine \sqrt{3} and 0.07179676972449082242158358245529\sqrt{3} to get 1.07179676972449082242158358245529\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}