Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{6}{\sqrt{6}}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}}{5}\times \frac{6}{\sqrt{6}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}}{5}\times \frac{6\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{6}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}}{5}\times \frac{6\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}}{5}\sqrt{6}
Cancel out 6 and 6.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}\sqrt{6}}{5}
Express \frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5}}{5}\sqrt{6} as a single fraction.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\sqrt{30}}{5}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{3}\sqrt{30}-\sqrt{2}\sqrt{30}}{5}
Use the distributive property to multiply \sqrt{3}-\sqrt{2} by \sqrt{30}.
\frac{\sqrt{3}\sqrt{3}\sqrt{10}-\sqrt{2}\sqrt{30}}{5}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{3\sqrt{10}-\sqrt{2}\sqrt{30}}{5}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{10}-\sqrt{2}\sqrt{2}\sqrt{15}}{5}
Factor 30=2\times 15. Rewrite the square root of the product \sqrt{2\times 15} as the product of square roots \sqrt{2}\sqrt{15}.
\frac{3\sqrt{10}-2\sqrt{15}}{5}
Multiply \sqrt{2} and \sqrt{2} to get 2.