Evaluate
5-2\sqrt{6}\approx 0.101020514
Quiz
Arithmetic
5 problems similar to:
\frac { \sqrt { 3 } - \sqrt { 2 } } { \sqrt { 2 } + \sqrt { 3 } }
Share
Copied to clipboard
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
-\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
-\left(\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}+\sqrt{3}\sqrt{2}\right)
Apply the distributive property by multiplying each term of \sqrt{3}-\sqrt{2} by each term of \sqrt{2}-\sqrt{3}.
-\left(\sqrt{6}-\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}+\sqrt{3}\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\left(\sqrt{6}-3-\left(\sqrt{2}\right)^{2}+\sqrt{3}\sqrt{2}\right)
The square of \sqrt{3} is 3.
-\left(\sqrt{6}-3-2+\sqrt{3}\sqrt{2}\right)
The square of \sqrt{2} is 2.
-\left(\sqrt{6}-5+\sqrt{3}\sqrt{2}\right)
Subtract 2 from -3 to get -5.
-\left(\sqrt{6}-5+\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\left(2\sqrt{6}-5\right)
Combine \sqrt{6} and \sqrt{6} to get 2\sqrt{6}.
-2\sqrt{6}-\left(-5\right)
To find the opposite of 2\sqrt{6}-5, find the opposite of each term.
-2\sqrt{6}+5
The opposite of -5 is 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}