Evaluate
-\sqrt{3}\approx -1.732050808
Share
Copied to clipboard
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3}-\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3}-\frac{3-2\sqrt{3}+1}{2}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3}-\frac{4-2\sqrt{3}}{2}
Add 3 and 1 to get 4.
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3}-\left(2-\sqrt{3}\right)
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3}-2+\sqrt{3}
To find the opposite of 2-\sqrt{3}, find the opposite of each term.
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3}+\frac{3\left(-2+\sqrt{3}\right)}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2+\sqrt{3} times \frac{3}{3}.
\frac{\sqrt{3}\left(2\sqrt{3}-6\right)+3\left(-2+\sqrt{3}\right)}{3}
Since \frac{\sqrt{3}\left(2\sqrt{3}-6\right)}{3} and \frac{3\left(-2+\sqrt{3}\right)}{3} have the same denominator, add them by adding their numerators.
\frac{6-6\sqrt{3}-6+3\sqrt{3}}{3}
Do the multiplications in \sqrt{3}\left(2\sqrt{3}-6\right)+3\left(-2+\sqrt{3}\right).
\frac{-3\sqrt{3}}{3}
Do the calculations in 6-6\sqrt{3}-6+3\sqrt{3}.
-\sqrt{3}
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}