Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(9+\sqrt{2}\right)}{\left(9-\sqrt{2}\right)\left(9+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{9-\sqrt{2}} by multiplying numerator and denominator by 9+\sqrt{2}.
\frac{\sqrt{3}\left(9+\sqrt{2}\right)}{9^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(9-\sqrt{2}\right)\left(9+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(9+\sqrt{2}\right)}{81-2}
Square 9. Square \sqrt{2}.
\frac{\sqrt{3}\left(9+\sqrt{2}\right)}{79}
Subtract 2 from 81 to get 79.
\frac{9\sqrt{3}+\sqrt{3}\sqrt{2}}{79}
Use the distributive property to multiply \sqrt{3} by 9+\sqrt{2}.
\frac{9\sqrt{3}+\sqrt{6}}{79}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.