Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{\left(7-4\sqrt{2}\right)\left(7+4\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{7-4\sqrt{2}} by multiplying numerator and denominator by 7+4\sqrt{2}.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{7^{2}-\left(-4\sqrt{2}\right)^{2}}
Consider \left(7-4\sqrt{2}\right)\left(7+4\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{49-\left(-4\sqrt{2}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{49-\left(-4\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-4\sqrt{2}\right)^{2}.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{49-16\left(\sqrt{2}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{49-16\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{49-32}
Multiply 16 and 2 to get 32.
\frac{\sqrt{3}\left(7+4\sqrt{2}\right)}{17}
Subtract 32 from 49 to get 17.
\frac{7\sqrt{3}+4\sqrt{3}\sqrt{2}}{17}
Use the distributive property to multiply \sqrt{3} by 7+4\sqrt{2}.
\frac{7\sqrt{3}+4\sqrt{6}}{17}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.