Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{\left(6-4\sqrt{3}\right)\left(6+4\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{6-4\sqrt{3}} by multiplying numerator and denominator by 6+4\sqrt{3}.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{6^{2}-\left(-4\sqrt{3}\right)^{2}}
Consider \left(6-4\sqrt{3}\right)\left(6+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{36-\left(-4\sqrt{3}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{36-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-4\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{36-16\left(\sqrt{3}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{36-16\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{36-48}
Multiply 16 and 3 to get 48.
\frac{\sqrt{3}\left(6+4\sqrt{3}\right)}{-12}
Subtract 48 from 36 to get -12.
\frac{6\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{-12}
Use the distributive property to multiply \sqrt{3} by 6+4\sqrt{3}.
\frac{6\sqrt{3}+4\times 3}{-12}
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}+12}{-12}
Multiply 4 and 3 to get 12.