Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(5+\sqrt{19}\right)}{\left(5-\sqrt{19}\right)\left(5+\sqrt{19}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{5-\sqrt{19}} by multiplying numerator and denominator by 5+\sqrt{19}.
\frac{\sqrt{3}\left(5+\sqrt{19}\right)}{5^{2}-\left(\sqrt{19}\right)^{2}}
Consider \left(5-\sqrt{19}\right)\left(5+\sqrt{19}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(5+\sqrt{19}\right)}{25-19}
Square 5. Square \sqrt{19}.
\frac{\sqrt{3}\left(5+\sqrt{19}\right)}{6}
Subtract 19 from 25 to get 6.
\frac{5\sqrt{3}+\sqrt{3}\sqrt{19}}{6}
Use the distributive property to multiply \sqrt{3} by 5+\sqrt{19}.
\frac{5\sqrt{3}+\sqrt{57}}{6}
To multiply \sqrt{3} and \sqrt{19}, multiply the numbers under the square root.