Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{\left(5\sqrt{3}+\sqrt{2}\right)\left(5\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{5\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by 5\sqrt{3}-\sqrt{2}.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(5\sqrt{3}+\sqrt{2}\right)\left(5\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{25\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{25\times 3-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{75-\left(\sqrt{2}\right)^{2}}
Multiply 25 and 3 to get 75.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{75-2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}\left(5\sqrt{3}-\sqrt{2}\right)}{73}
Subtract 2 from 75 to get 73.
\frac{5\left(\sqrt{3}\right)^{2}-\sqrt{3}\sqrt{2}}{73}
Use the distributive property to multiply \sqrt{3} by 5\sqrt{3}-\sqrt{2}.
\frac{5\times 3-\sqrt{3}\sqrt{2}}{73}
The square of \sqrt{3} is 3.
\frac{15-\sqrt{3}\sqrt{2}}{73}
Multiply 5 and 3 to get 15.
\frac{15-\sqrt{6}}{73}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.