Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(5-\sqrt{5}\right)}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
\frac{\sqrt{3}\left(5-\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(5-\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
\frac{\sqrt{3}\left(5-\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
\frac{5\sqrt{3}-\sqrt{3}\sqrt{5}}{20}
Use the distributive property to multiply \sqrt{3} by 5-\sqrt{5}.
\frac{5\sqrt{3}-\sqrt{15}}{20}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.