Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(4-\sqrt{10}\right)}{\left(4+\sqrt{10}\right)\left(4-\sqrt{10}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{4+\sqrt{10}} by multiplying numerator and denominator by 4-\sqrt{10}.
\frac{\sqrt{3}\left(4-\sqrt{10}\right)}{4^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(4+\sqrt{10}\right)\left(4-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(4-\sqrt{10}\right)}{16-10}
Square 4. Square \sqrt{10}.
\frac{\sqrt{3}\left(4-\sqrt{10}\right)}{6}
Subtract 10 from 16 to get 6.
\frac{4\sqrt{3}-\sqrt{3}\sqrt{10}}{6}
Use the distributive property to multiply \sqrt{3} by 4-\sqrt{10}.
\frac{4\sqrt{3}-\sqrt{30}}{6}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.