Solve for x
x=\sqrt{3}\left(y+24\right)
y\neq -24
Solve for y
y=\frac{\sqrt{3}x-72}{3}
x\neq 0
Graph
Share
Copied to clipboard
x\sqrt{3}=3\left(y+24\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
x\sqrt{3}=3y+72
Use the distributive property to multiply 3 by y+24.
\sqrt{3}x=3y+72
The equation is in standard form.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{3y+72}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{3y+72}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=\sqrt{3}\left(y+24\right)
Divide 72+3y by \sqrt{3}.
x=\sqrt{3}\left(y+24\right)\text{, }x\neq 0
Variable x cannot be equal to 0.
x\sqrt{3}=3\left(y+24\right)
Multiply both sides of the equation by 3x, the least common multiple of 3,x.
x\sqrt{3}=3y+72
Use the distributive property to multiply 3 by y+24.
3y+72=x\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
3y=x\sqrt{3}-72
Subtract 72 from both sides.
3y=\sqrt{3}x-72
The equation is in standard form.
\frac{3y}{3}=\frac{\sqrt{3}x-72}{3}
Divide both sides by 3.
y=\frac{\sqrt{3}x-72}{3}
Dividing by 3 undoes the multiplication by 3.
y=\frac{\sqrt{3}x}{3}-24
Divide x\sqrt{3}-72 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}