Solve for h
h = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Share
Copied to clipboard
\sqrt{3}=3\left(h-1\right)^{\frac{1}{2}}\times \frac{\sqrt{2}}{2}
Multiply both sides of the equation by 3.
\sqrt{3}=\frac{3\sqrt{2}}{2}\left(h-1\right)^{\frac{1}{2}}
Express 3\times \frac{\sqrt{2}}{2} as a single fraction.
2\sqrt{3}=3\sqrt{2}\left(h-1\right)^{\frac{1}{2}}
Multiply both sides of the equation by 2.
2\sqrt{3}=3\sqrt{2}\sqrt{h-1}
Reorder the terms.
3\sqrt{2}\sqrt{h-1}=2\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
\frac{3\sqrt{2}\sqrt{h-1}}{3\sqrt{2}}=\frac{2\sqrt{3}}{3\sqrt{2}}
Divide both sides by 3\sqrt{2}.
\sqrt{h-1}=\frac{2\sqrt{3}}{3\sqrt{2}}
Dividing by 3\sqrt{2} undoes the multiplication by 3\sqrt{2}.
\sqrt{h-1}=\frac{\sqrt{6}}{3}
Divide 2\sqrt{3} by 3\sqrt{2}.
h-1=\frac{2}{3}
Square both sides of the equation.
h-1-\left(-1\right)=\frac{2}{3}-\left(-1\right)
Add 1 to both sides of the equation.
h=\frac{2}{3}-\left(-1\right)
Subtracting -1 from itself leaves 0.
h=\frac{5}{3}
Subtract -1 from \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}