Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\sqrt{3}\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{3\left(\sqrt{2}-2\right)}{\sqrt{3}}-\left(2+\sqrt{6}\right)
Rationalize the denominator of \frac{\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\sqrt{3}\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{3\left(\sqrt{2}-2\right)}{\sqrt{3}}-\left(2+\sqrt{6}\right)
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2+\sqrt{3}\right)}{4-3}+\frac{3\left(\sqrt{2}-2\right)}{\sqrt{3}}-\left(2+\sqrt{6}\right)
Square 2. Square \sqrt{3}.
\frac{\sqrt{3}\left(2+\sqrt{3}\right)}{1}+\frac{3\left(\sqrt{2}-2\right)}{\sqrt{3}}-\left(2+\sqrt{6}\right)
Subtract 3 from 4 to get 1.
\sqrt{3}\left(2+\sqrt{3}\right)+\frac{3\left(\sqrt{2}-2\right)}{\sqrt{3}}-\left(2+\sqrt{6}\right)
Anything divided by one gives itself.
\sqrt{3}\left(2+\sqrt{3}\right)+\frac{3\left(\sqrt{2}-2\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(2+\sqrt{6}\right)
Rationalize the denominator of \frac{3\left(\sqrt{2}-2\right)}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{3}\left(2+\sqrt{3}\right)+\frac{3\left(\sqrt{2}-2\right)\sqrt{3}}{3}-\left(2+\sqrt{6}\right)
The square of \sqrt{3} is 3.
\sqrt{3}\left(2+\sqrt{3}\right)+\frac{3\left(\sqrt{2}-2\right)\sqrt{3}}{3}-2-\sqrt{6}
To find the opposite of 2+\sqrt{6}, find the opposite of each term.
\sqrt{3}\left(2+\sqrt{3}\right)+\left(\sqrt{2}-2\right)\sqrt{3}-2-\sqrt{6}
Cancel out 3 and 3.
2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}-2\right)\sqrt{3}-2-\sqrt{6}
Use the distributive property to multiply \sqrt{3} by 2+\sqrt{3}.
2\sqrt{3}+3+\left(\sqrt{2}-2\right)\sqrt{3}-2-\sqrt{6}
The square of \sqrt{3} is 3.
2\sqrt{3}+3+\sqrt{2}\sqrt{3}-2\sqrt{3}-2-\sqrt{6}
Use the distributive property to multiply \sqrt{2}-2 by \sqrt{3}.
2\sqrt{3}+3+\sqrt{6}-2\sqrt{3}-2-\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3+\sqrt{6}-2-\sqrt{6}
Combine 2\sqrt{3} and -2\sqrt{3} to get 0.
1+\sqrt{6}-\sqrt{6}
Subtract 2 from 3 to get 1.
1
Combine \sqrt{6} and -\sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}