\frac { \sqrt { 3 } } { 2 } x ^ { 2 } \quad \text { (c) } \frac { x ^ { 2 } } { \sqrt { 3 } }
Evaluate
\frac{cx^{4}}{2}
Differentiate w.r.t. x
2cx^{3}
Graph
Share
Copied to clipboard
\frac{\sqrt{3}}{2}x^{2}c\times \frac{x^{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{x^{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{2}x^{2}c\times \frac{x^{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}x^{2}}{2}c\times \frac{x^{2}\sqrt{3}}{3}
Express \frac{\sqrt{3}}{2}x^{2} as a single fraction.
\frac{\sqrt{3}x^{2}c}{2}\times \frac{x^{2}\sqrt{3}}{3}
Express \frac{\sqrt{3}x^{2}}{2}c as a single fraction.
\frac{\sqrt{3}x^{2}cx^{2}\sqrt{3}}{2\times 3}
Multiply \frac{\sqrt{3}x^{2}c}{2} times \frac{x^{2}\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}cx^{2}}{2\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3x^{4}c}{2\times 3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{cx^{4}}{2}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}