Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{3}}{2}\right)^{2}-\frac{\sqrt{2}}{2}\times \frac{12}{2}
Multiply \frac{\sqrt{3}}{2} and \frac{\sqrt{3}}{2} to get \left(\frac{\sqrt{3}}{2}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\sqrt{2}}{2}\times \frac{12}{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\sqrt{2}}{2}\times 6
Divide 12 by 2 to get 6.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-3\sqrt{2}
Cancel out 2, the greatest common factor in 6 and 2.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{-3\sqrt{2}\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3\sqrt{2} times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{3}\right)^{2}-3\sqrt{2}\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} and \frac{-3\sqrt{2}\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{3}{2^{2}}-3\sqrt{2}
The square of \sqrt{3} is 3.
\frac{3}{4}-3\sqrt{2}
Calculate 2 to the power of 2 and get 4.