Evaluate
\frac{3}{4}-3\sqrt{2}\approx -3.492640687
Factor
\frac{3 {(1 - 4 \sqrt{2})}}{4} = -3.4926406871192857
Share
Copied to clipboard
\left(\frac{\sqrt{3}}{2}\right)^{2}-\frac{\sqrt{2}}{2}\times \frac{12}{2}
Multiply \frac{\sqrt{3}}{2} and \frac{\sqrt{3}}{2} to get \left(\frac{\sqrt{3}}{2}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\sqrt{2}}{2}\times \frac{12}{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\sqrt{2}}{2}\times 6
Divide 12 by 2 to get 6.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-3\sqrt{2}
Cancel out 2, the greatest common factor in 6 and 2.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{-3\sqrt{2}\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3\sqrt{2} times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{3}\right)^{2}-3\sqrt{2}\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} and \frac{-3\sqrt{2}\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{3}{2^{2}}-3\sqrt{2}
The square of \sqrt{3} is 3.
\frac{3}{4}-3\sqrt{2}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}