\frac { \sqrt { 3 } } { 2 } + x ^ { 2 } + x ( \sqrt { 40 }
Evaluate
x^{2}+2\sqrt{10}x+\frac{\sqrt{3}}{2}
Factor
\frac{2x^{2}+4\sqrt{10}x+\sqrt{3}}{2}
Graph
Share
Copied to clipboard
\frac{\sqrt{3}}{2}+x^{2}+x\times 2\sqrt{10}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{\sqrt{3}}{2}+\frac{2\left(x^{2}+x\times 2\sqrt{10}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+x\times 2\sqrt{10} times \frac{2}{2}.
\frac{\sqrt{3}+2\left(x^{2}+x\times 2\sqrt{10}\right)}{2}
Since \frac{\sqrt{3}}{2} and \frac{2\left(x^{2}+x\times 2\sqrt{10}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}+2x^{2}+4x\sqrt{10}}{2}
Do the multiplications in \sqrt{3}+2\left(x^{2}+x\times 2\sqrt{10}\right).
\frac{\sqrt{3}+2x^{2}+4\sqrt{10}x}{2}
Factor out \frac{1}{2}. Polynomial \sqrt{3}+2x^{2}+4\sqrt{10}x is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}