Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{\left(2\sqrt{6}+2\right)\left(2\sqrt{6}-2\right)}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{6}+2} by multiplying numerator and denominator by 2\sqrt{6}-2.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{\left(2\sqrt{6}\right)^{2}-2^{2}}
Consider \left(2\sqrt{6}+2\right)\left(2\sqrt{6}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{2^{2}\left(\sqrt{6}\right)^{2}-2^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{4\left(\sqrt{6}\right)^{2}-2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{4\times 6-2^{2}}
The square of \sqrt{6} is 6.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{24-2^{2}}
Multiply 4 and 6 to get 24.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{24-4}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{6}-2\right)}{20}
Subtract 4 from 24 to get 20.
\frac{2\sqrt{3}\sqrt{6}-2\sqrt{3}}{20}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{6}-2.
\frac{2\sqrt{3}\sqrt{3}\sqrt{2}-2\sqrt{3}}{20}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2\times 3\sqrt{2}-2\sqrt{3}}{20}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6\sqrt{2}-2\sqrt{3}}{20}
Multiply 2 and 3 to get 6.