Evaluate
\frac{3\sqrt{15}+7}{17}\approx 1.095232355
Share
Copied to clipboard
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{5}-\sqrt{3}.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
Consider \left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{2^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{4\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{4\times 5-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{20-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
Multiply 4 and 5 to get 20.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{20-3}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}}
Subtract 3 from 20 to get 17.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{\left(\sqrt{3}-2\sqrt{5}\right)\left(\sqrt{3}+2\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}-2\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+2\sqrt{5}.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Consider \left(\sqrt{3}-2\sqrt{5}\right)\left(\sqrt{3}+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{3-\left(-2\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{3-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-2\sqrt{5}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{3-4\left(\sqrt{5}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{3-4\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{3-20}
Multiply 4 and 5 to get 20.
\frac{\sqrt{3}\left(2\sqrt{5}-\sqrt{3}\right)}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{-17}
Subtract 20 from 3 to get -17.
\frac{2\sqrt{3}\sqrt{5}-\left(\sqrt{3}\right)^{2}}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{-17}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{5}-\sqrt{3}.
\frac{2\sqrt{15}-\left(\sqrt{3}\right)^{2}}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{-17}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{15}-3}{17}-\frac{\sqrt{5}\left(\sqrt{3}+2\sqrt{5}\right)}{-17}
The square of \sqrt{3} is 3.
\frac{2\sqrt{15}-3}{17}-\frac{\sqrt{5}\sqrt{3}+2\left(\sqrt{5}\right)^{2}}{-17}
Use the distributive property to multiply \sqrt{5} by \sqrt{3}+2\sqrt{5}.
\frac{2\sqrt{15}-3}{17}-\frac{\sqrt{15}+2\left(\sqrt{5}\right)^{2}}{-17}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{15}-3}{17}-\frac{\sqrt{15}+2\times 5}{-17}
The square of \sqrt{5} is 5.
\frac{2\sqrt{15}-3}{17}-\frac{\sqrt{15}+10}{-17}
Multiply 2 and 5 to get 10.
\frac{2\sqrt{15}-3}{17}-\frac{-\sqrt{15}-10}{17}
Multiply both numerator and denominator by -1.
\frac{2\sqrt{15}-3-\left(-\sqrt{15}-10\right)}{17}
Since \frac{2\sqrt{15}-3}{17} and \frac{-\sqrt{15}-10}{17} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{15}-3+\sqrt{15}+10}{17}
Do the multiplications in 2\sqrt{15}-3-\left(-\sqrt{15}-10\right).
\frac{3\sqrt{15}+7}{17}
Do the calculations in 2\sqrt{15}-3+\sqrt{15}+10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}