Evaluate
\frac{2\sqrt{3}}{23}-\frac{\sqrt{2}}{46}\approx 0.119869341
Share
Copied to clipboard
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{\left(12+\sqrt{6}\right)\left(12-\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{12+\sqrt{6}} by multiplying numerator and denominator by 12-\sqrt{6}.
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{12^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(12+\sqrt{6}\right)\left(12-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{144-6}
Square 12. Square \sqrt{6}.
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{138}
Subtract 6 from 144 to get 138.
\frac{12\sqrt{3}-\sqrt{3}\sqrt{6}}{138}
Use the distributive property to multiply \sqrt{3} by 12-\sqrt{6}.
\frac{12\sqrt{3}-\sqrt{3}\sqrt{3}\sqrt{2}}{138}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12\sqrt{3}-3\sqrt{2}}{138}
Multiply \sqrt{3} and \sqrt{3} to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}