Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{\left(12+\sqrt{6}\right)\left(12-\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{12+\sqrt{6}} by multiplying numerator and denominator by 12-\sqrt{6}.
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{12^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(12+\sqrt{6}\right)\left(12-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{144-6}
Square 12. Square \sqrt{6}.
\frac{\sqrt{3}\left(12-\sqrt{6}\right)}{138}
Subtract 6 from 144 to get 138.
\frac{12\sqrt{3}-\sqrt{3}\sqrt{6}}{138}
Use the distributive property to multiply \sqrt{3} by 12-\sqrt{6}.
\frac{12\sqrt{3}-\sqrt{3}\sqrt{3}\sqrt{2}}{138}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12\sqrt{3}-3\sqrt{2}}{138}
Multiply \sqrt{3} and \sqrt{3} to get 3.