Evaluate
\frac{3\left(\sqrt{3}+1\right)}{2}\approx 4.098076211
Factor
\frac{3 {(\sqrt{3} + 1)}}{2} = 4.098076211353316
Share
Copied to clipboard
\frac{\sqrt{3}}{1-1\times \frac{1}{\sqrt{3}}}\times 1
Divide \sqrt{3} by \sqrt{3} to get 1.
\frac{\sqrt{3}}{1-1\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\times 1
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{1-1\times \frac{\sqrt{3}}{3}}\times 1
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{1-\frac{\sqrt{3}}{3}}\times 1
Express 1\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{\sqrt{3}}{\frac{3}{3}-\frac{\sqrt{3}}{3}}\times 1
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\sqrt{3}}{\frac{3-\sqrt{3}}{3}}\times 1
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{3}\times 3}{3-\sqrt{3}}\times 1
Divide \sqrt{3} by \frac{3-\sqrt{3}}{3} by multiplying \sqrt{3} by the reciprocal of \frac{3-\sqrt{3}}{3}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{3}\times 3}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}\times 1
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{9-3}\times 1
Square 3. Square \sqrt{3}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{6}\times 1
Subtract 3 from 9 to get 6.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{6}
Express \frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{6}\times 1 as a single fraction.
\frac{3\sqrt{3}\times 3+3\left(\sqrt{3}\right)^{2}}{6}
Use the distributive property to multiply \sqrt{3}\times 3 by 3+\sqrt{3}.
\frac{9\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{6}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{3}+3\times 3}{6}
The square of \sqrt{3} is 3.
\frac{9\sqrt{3}+9}{6}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}