Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}}{1-1\times \frac{1}{\sqrt{3}}}\times 1
Divide \sqrt{3} by \sqrt{3} to get 1.
\frac{\sqrt{3}}{1-1\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\times 1
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{1-1\times \frac{\sqrt{3}}{3}}\times 1
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{1-\frac{\sqrt{3}}{3}}\times 1
Express 1\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{\sqrt{3}}{\frac{3}{3}-\frac{\sqrt{3}}{3}}\times 1
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\sqrt{3}}{\frac{3-\sqrt{3}}{3}}\times 1
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{3}\times 3}{3-\sqrt{3}}\times 1
Divide \sqrt{3} by \frac{3-\sqrt{3}}{3} by multiplying \sqrt{3} by the reciprocal of \frac{3-\sqrt{3}}{3}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{3}\times 3}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}\times 1
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{9-3}\times 1
Square 3. Square \sqrt{3}.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{6}\times 1
Subtract 3 from 9 to get 6.
\frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{6}
Express \frac{\sqrt{3}\times 3\left(3+\sqrt{3}\right)}{6}\times 1 as a single fraction.
\frac{3\sqrt{3}\times 3+3\left(\sqrt{3}\right)^{2}}{6}
Use the distributive property to multiply \sqrt{3}\times 3 by 3+\sqrt{3}.
\frac{9\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{6}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{3}+3\times 3}{6}
The square of \sqrt{3} is 3.
\frac{9\sqrt{3}+9}{6}
Multiply 3 and 3 to get 9.